Skip to main content

How is AI Saving the Future

how_is_AI_Saving_the_Future_cerelabs_12_05_2016
Meanwhile the talk of AI being the number one risk of human extinction is going on, there are lot many ways it is helping humanity. Recent developments in Machine Learning are helping scientists to solve difficult problems ranging from climate change to finding the cure for cancer.

It will be a daunting task for humans to understand enormous amount of data that is generated all over the world. Machine Learning is helping scientists to use algorithms that learn from data and find patterns.

Below is a list of few of the problems AI is working on to help find solutions which otherwise would not have been possible:

  • Cancer Diagnostics: Recently, scientists at University of California (UCLA) applied Deep Learning to extract features for achieving high accuracy in label-free cell classification. This technique will help in faster cancer diagnostics, and thus will save a lot of lives.

  • Low Cost Renewable Energy: Artificial-intelligence is helping wind power forecasts of unprecedented accuracy that are making it possible for Colorado to use far more renewable energy, at lower cost.

  • Global Conservation: National Science Foundation (NSF) funded researchers are using Artificial Intelligence to solve poaching and illegal logging. They have created an AI-driven application called Protection Assistant for Wildlife Security (PAWS) which has led to significant improvements when tested in Uganda and Malaysia in 2014, thus protecting forests and wildlife.

  • Precision Based Medicine: AI is turning out to be a powerful tool for precision-based medicine, where treatments are tailored made. Custom diagnostics and treatments seems possible because of the recent advancements in AI.

We at Cere Labs are continuously thinking how we can develop applications based on AI that can help humanity, especially in healthcare. We will keep you updated of the progress we make in this area. AI is not just about robots winning a game of chess or  a game of GO.

References:

  1. Chen, C. L. et al. Deep Learning in Label-free Cell Classification. Sci. Rep. 6, 21471; doi: 10.1038/srep21471 (2016).

Comments

  1. Thanks for Sharing a useful content about Artificial Intelligence
    Please visit our website At SFJ Business Solutions we to shared some blogs about AI
    AI online course

    ReplyDelete
  2. Learn about the various Error functions, which are also called Cost functions or Loss functions. Also, understand about the entropy and its use in measuring error. Understand the various optimization techniques, drawbacks and ways to overcome the same. This you will learn alongside various terms in implementing neural networks.ai courses

    ReplyDelete
  3. Through this post, I know that your good knowledge in playing with all the pieces was very helpful. I notify that this is the first place where I find issues I've been searching for. You have a clever yet attractive way of writing. 360DigiTMG AI Course in Malaysia
    AI Course
    AI Courses

    ReplyDelete
  4. I think I have never watched such online diaries ever that has absolute things with all nuances which I need. So thoughtfully update this ever for us.
    360DigiTMG machine learning course malaysia

    ReplyDelete
  5. Great to become visiting your weblog once more, it has been a very long time for me. Pleasantly this article that i've been sat tight for such a long time. I will require this post to add up to my task in the school, and it has identical theme along with your review. Much appreciated, great offer.
    data scientist training hyderabad

    ReplyDelete
  6. stunning, incredible, I was thinking about how to fix skin inflammation normally.I've bookmark your site and furthermore include rss. keep us refreshed.

    AI Course

    ReplyDelete
  7. thanks for the information seeks such more blogs with complete knowledge.
    data analytics course

    ReplyDelete
  8. Very great post. I just discovered your blog and needed to state that I have truly appreciated perusing your blog entries. Any way I'll be buying in to your feed and I trust you post again soon. data scientist course

    ReplyDelete
  9. Very well written article. It was an awesome article to read. Complete rich content and fully informative. If anyone looking for Scientist Training Institute you can visit here Data Scientist Training Institute In Hyderabad

    ReplyDelete

Post a Comment

Popular posts from this blog

Anomaly Detection based on Prediction - A Step Closer to General Artificial Intelligence

Anomaly detection refers to the problem of finding patterns that do not conform to expected behavior [1]. In the last article "Understanding Neocortex to Create Intelligence" , we explored how applications based on the workings of neocortex create intelligence. Pattern recognition along with prediction makes human brains the ultimate intelligent machines. Prediction help humans to detect anomalies in the environment. Before every action is taken, neocortex predicts the outcome. If there is a deviation from the expected outcome, neocortex detects anomalies, and will take necessary steps to handle them. A system which claims to be intelligent, should have anomaly detection in place. Recent findings using research on neocortex have made it possible to create applications that does anomaly detection. Numenta’s NuPIC using Hierarchical Temporal Memory (HTM) framework is able to do inference and prediction, and hence anomaly detection. HTM accurately predicts anomalies in real

Implement XOR in Tensorflow

XOR is considered as the 'Hello World' of Neural Networks. It seems like the best problem to try your first TensorFlow program. Tensorflow makes it easy to build a neural network with few tweaks. All you have to do is make a graph and you have a neural network that learns the XOR function. Why XOR? Well, XOR is the reason why backpropogation was invented in the first place. A single layer perceptron although quite successful in learning the AND and OR functions, can't learn XOR (Table 1) as it is just a linear classifier, and XOR is a linearly inseparable pattern (Figure 1). Thus the single layer perceptron goes into a panic mode while learning XOR – it can't just do that.  Deep Propogation algorithm comes for the rescue. It learns an XOR by adding two lines L1 and L2 (Figure 2). This post assumes you know how the backpropogation algorithm works. Following are the steps to implement the ne

Understanding Generative Adverserial Networks - Part 1

This is a two part series on understanding Generative Adversarial Networks (GANs). This part deals with the conceptual understanding of GANs. In the second part we will try to understand the mathematics behind GANs. Generative networks have been in use for quite a while now. And so have discriminative networks. But only in 2014 did someone get the brilliant idea of using them together. These are the generative adversarial networks. This kind of deep learning model was invented by Ian Goodfellow . When we work with data already labelled, it’s called supervised learning. It’s much easier compared to unsupervised learning, which has no predefined labels, making the task more vague.  "Generative Adversarial Networks is the most interesting idea in the last ten years in Machine Learning." - Yann LeCun In this post, we’ll discuss what GANs are and how they work, at a higher , more abstract level. Since 2014, many variations of the traditional GAN have co