Skip to main content

GPU - The brain of Artificial Intelligence

Machine Learning algorithms require tens and thousands of CPU based servers to train a model, which turns out to be an expensive activity. Machine Learning researchers and engineers are often faced with the problem of running their algorithms fast.

Although initially invented for processing graphics in computer games, GPUs today are used in machine learning to perform feature detection from vast amount of unlabeled data. Compared to CPUs, GPUs take far less time to train models that perform classification and prediction.

Characteristics of GPUs that make them ideal for machine learning

  • Handle large datasets
  • Needs far less data centre infrastructure
  • Can be specialized for specific machine learning needs
  • Perform vector computations faster than any known processor
  • Designed to perform data parallel computation

NVIDIA CUDA GPUs today are used to build deep learning image processing tools for  Adobe Creative Cloud. According to NVIDIA blog future Adobe applications might be able to automatically identify font styles from images to help their users choose the right font for their creative projects. For such intense deep learning methods CPUs stand far behind GPUs.  According to NVIDIA’s website, GPUs perform more than 33% faster compared to CPUs on recognition tasks.

Major corporations including Baidu, Netflix, Facebook, Google, Bitcoin and many more are using GPUs for machine learning. The recent open source machine learning toolkits such as Theano and Tensorflow provide GPU support. With just few lines of code you can allocate the machine learning algorithm to learn the model on multiple GPUs.

Recently Facebook open sourced its AI hardware design named Big Sur which leverages NVIDIA's Tesla Accelerated Computing Platform. Check out the news.

GPUs are changing the AI scene too fast, and have established themselves as the necessary hardware to build deep learning applications. They might turn out to be the most important component in brain, or the brain itself in the most advanced machines of the future.

Comments

  1. According to NVIDIA’s website, GPUs perform more than 33% faster compared to CPUs on recognition tasks. best virtual assistant

    ReplyDelete

Post a Comment

Popular posts from this blog

Implement XOR in Tensorflow

XOR is considered as the 'Hello World' of Neural Networks. It seems like the best problem to try your first TensorFlow program.

Tensorflow makes it easy to build a neural network with few tweaks. All you have to do is make a graph and you have a neural network that learns the XOR function.

Why XOR? Well, XOR is the reason why backpropogation was invented in the first place. A single layer perceptron although quite successful in learning the AND and OR functions, can't learn XOR (Table 1) as it is just a linear classifier, and XOR is a linearly inseparable pattern (Figure 1). Thus the single layer perceptron goes into a panic mode while learning XOR – it can't just do that. 

Deep Propogation algorithm comes for the rescue. It learns an XOR by adding two lines L1 and L2 (Figure 2). This post assumes you know how the backpropogation algorithm works.



Following are the steps to implement the neural network in Figure 3 for XOR in Tensorflow:
1. Import necessary libraries
impo…

From Cats to Convolutional Neural Networks

Widely used in image recognition, Convolutional Neural Networks (CNNs) consist of multiple layers of neuron collection which look at small window of the input image, called receptive fields.
The history of Convolutional Neural Networks begins with a famous experiment “Receptive Fields of Single Neurons in the Cat’s Striate Cortex” conducted by Hubel and Wiesel. The experiment confirmed the long belief of neurobiologists and psychologists that the neurons in the brain act as feature detectors.
The first neural network model that drew inspiration from the hierarchy model of the visual nervous system proposed by Hubel and Wiesel was Neocognitron invented by Kunihiko Fukushima, and had the ability of performing unsupervised learning. Kunihiko Fukushima’s approach was commendable as it was the first neural network model having the capability of pattern recognition similar to human brain. The model gave a lot of insight and helped future understanding of the brain.
A successful advancement i…

Understanding Projection Pursuit Regression

The following article gives an overview of the paper "Projection Pursuit Regression” published by Friedman J. H and Stuetzle W. You will need basic background of Machine Learning and Regression before understanding this article. The algorithms and images are taken from the paper. (http://www.stat.washington.edu/courses/stat527/s13/readings/FriedmanStuetzle_JASA_1981.pdf
What is Regression? Regression is a machine learning technology used to predict a response variable given multiple predictor variables or features. The main distinction is that the response to be predicted is any real value and not just any class or cluster name. Hence though similar to Classification in terms of making a prediction, it is largely different given what it’s predicting. 
A simple to understand real world problem of regression would be predicting the sale price of a particular house based on it’s square footage, given that we have data of similar houses sold in that area in the past. The regression so…