Skip to main content

In the World of Document Similarity

How does a human infer whether two documents are similar? This question has dazzled cognitive scientists, and is one area under which a lot of research is taking place. As of  now there is no product that is able to match or surpass human capability in finding the similarity in documents. But things are improving in this domain, and companies such as IBM and Microsoft are investing a lot in this area.

We at Cere Labs, an Artificial Intelligence startup based in Mumbai, also are working in this area, and have applied LDA and Word2Vec techniques, both giving us promising results:

Latent Dirichlet Allocation (LDA): LDA is a technique used mainly for topic modeling. You can leverage on this topic modeling to find the similarity between documents. It is assumed that more the topics two documents overlap, more are the chances that those documents carry semantic similarity.

You can study LDA in the following paper:

You can implement LDA using Gensim:


Word2Vec bring words into vector space, where words with similar semantic meaning are embedded near each other. So when plotted in a higher dimensional vector space, similar words tend to come together. The best part with Word2Vec is that it also captures semantic similarity.

You can read the original Word2Vec paper here:

You can also check the implementation in tensorflow at:

Both LDA and Word2Vec techniques can be combined to achieve interesting results. Keep following this space as we will report our findings in future blog posts.

When we look at the results achieved by such techniques, it feels that the AI is thinking. 

For a detailed understanding of Word Embeddings please refer to the following article - An Introduction to Word Embeddings


Popular posts from this blog

GPU - The brain of Artificial Intelligence

Machine Learning algorithms require tens and thousands of CPU based servers to train a model, which turns out to be an expensive activity. Machine Learning researchers and engineers are often faced with the problem of running their algorithms fast. Although initially invented for processing graphics in computer games, GPUs today are used in machine learning to perform feature detection from vast amount of unlabeled data. Compared to CPUs, GPUs take far less time to train models that perform classification and prediction. Characteristics of GPUs that make them ideal for machine learning Handle large datasets Needs far less data centre infrastructure Can be specialized for specific machine learning needs Perform vector computations faster than any known processor Designed to perform data parallel computation NVIDIA CUDA GPUs today are used to build deep learning image processing tools for  Adobe Creative Cloud. According to NVIDIA blog future Adobe applicati

Understanding Projection Pursuit Regression

The following article gives an overview of the paper "Projection Pursuit Regression” published by Friedman J. H and Stuetzle W. You will need basic background of Machine Learning and Regression before understanding this article. The algorithms and images are taken from the paper. ( )  What is Regression? Regression is a machine learning technology used to predict a response variable given multiple predictor variables or features. The main distinction is that the response to be predicted is any real value and not just any class or cluster name. Hence though similar to Classification in terms of making a prediction, it is largely different given what it’s predicting.  A simple to understand real world problem of regression would be predicting the sale price of a particular house based on it’s square footage, given that we have data of similar houses sold in that area in the past. T

Understanding Generative Adverserial Networks - Part 1

This is a two part series on understanding Generative Adversarial Networks (GANs). This part deals with the conceptual understanding of GANs. In the second part we will try to understand the mathematics behind GANs. Generative networks have been in use for quite a while now. And so have discriminative networks. But only in 2014 did someone get the brilliant idea of using them together. These are the generative adversarial networks. This kind of deep learning model was invented by Ian Goodfellow . When we work with data already labelled, it’s called supervised learning. It’s much easier compared to unsupervised learning, which has no predefined labels, making the task more vague.  "Generative Adversarial Networks is the most interesting idea in the last ten years in Machine Learning." - Yann LeCun In this post, we’ll discuss what GANs are and how they work, at a higher , more abstract level. Since 2014, many variations of the traditional GAN have co