Skip to main content

The Project Fellowship Program - 2016

The Project Fellowship Program - 2016

Cere Labs’ Project Fellowship Program will develop professionals as well as leaders in emerging world of Artificial Intelligence.

The Project Fellowship Program gathers all artificial intelligence enthusiasts in real time working and learning environment. Through this program candidates will get hands on experience on Machine Learning, Deep Learning, Neural Networks, Data Mining and many other fields of Artificial Intelligence. Hands on experience, expert mentor ship and a strong network of AI (Artificial Intelligence) professionals will make your job more interesting.

What is Project Fellowship Program?

Cere Labs is a privately held company and is working in AI (Artificial Intelligence) and it provides Jobs in Machine Learning, Jobs in Deep Learning, Jobs in Neural Network, Jobs in Data Mining, Jobs in Artificial Intelligence through this fellowship program. This fellowship program will groom professionals and will make him/her ready to pursue a career in Artificial Intelligence with hands on experience on various areas of Artificial Intelligence. This program will include everything right from learning basics of AI (Artificial Intelligence) to creation of chat bots, voice recognition programs etc.

This Project Fellowship Program is designed for you to achieve your career growth in the very rapidly growing field, Artificial Intelligence.

We are sure you are committed to learning and on other side we are committed about helping you and sharing all the knowledge of Artificial Intelligence with you. We will also offer a stipend for joiners as per the job allocated and the level of contribution towards projects achievement. Cere Labs also offers employment at the end of Project Fellowship Program to outstanding project fellows

The Project Fellowship Program opens the boundaries of opportunities not only for engineers, developers or working professionals but also to every enthusiast, student and professional working in other field too.

Selection Procedure

We invite your resumes on , which will help us to know you and your professional history better (Students can send their resume with project they have worked on). We will review all the applications thoroughly and then selected candidates will be invited for personal interview.
Why Project Fellowship Program

This is the most common question that can hit anyone’s mind before applying for Fellowship in Cere Labs. But the answer for this question comes from JUNE 2016; when we had successfully launched our first Internship Program for college students. It ran for around 1 and half month. It was Cere Labs’ first ever Internship Program and it was quite successful because of the team work put in by the Interns and Cere Labs. Interns worked on different AI (Artificial Intelligence) projects including Projects in Machine Learning, Projects in Deep Learning, Projects in Neural Network, Projects in Image Processing, Projects in Data Mining etc.

This internship program not only did help students to learn but helped us to recognize and realize that this type of opportunities should be opened for every enthusiast and not only to students. And this propelled the inception of "The Project Fellowship Program".

About Cere Labs 

Cere Labs is a nascent, just formed privately held company that aims at conducting research and development on all areas related to AI (Artificial Intelligence).
Machine Learning, Deep Learning, Neural Network, Natural Language Processing, Data Mining are some of the fields where Cere Labs is keen to work on.
If you are interested to be the part of Project Fellowship Program, kindly mail your resume with below details on

  • Name
  • City
  • Current Professional Status
  • Highest Qualification
  • How did you come to know about "The Project Fellowship Program"
  • Contact Number

You can find more details about Cere Labs on,


  1. Your blog contains lots of valuable data. It is a factual and beneficial article for us.Job Agencies Near Me Thankful to you for sharing an article like this.

  2. This information is meaningful and magnificent which you have shared here about the I am impressed by the details that you have shared in this post and It reveals how nicely you understand this subject. I would like to thanks for sharing this article here.Business Development Executive South Africa


Post a Comment

Popular posts from this blog

GPU - The brain of Artificial Intelligence

Machine Learning algorithms require tens and thousands of CPU based servers to train a model, which turns out to be an expensive activity. Machine Learning researchers and engineers are often faced with the problem of running their algorithms fast. Although initially invented for processing graphics in computer games, GPUs today are used in machine learning to perform feature detection from vast amount of unlabeled data. Compared to CPUs, GPUs take far less time to train models that perform classification and prediction. Characteristics of GPUs that make them ideal for machine learning Handle large datasets Needs far less data centre infrastructure Can be specialized for specific machine learning needs Perform vector computations faster than any known processor Designed to perform data parallel computation NVIDIA CUDA GPUs today are used to build deep learning image processing tools for  Adobe Creative Cloud. According to NVIDIA blog future Adobe applicati

Understanding Projection Pursuit Regression

The following article gives an overview of the paper "Projection Pursuit Regression” published by Friedman J. H and Stuetzle W. You will need basic background of Machine Learning and Regression before understanding this article. The algorithms and images are taken from the paper. ( )  What is Regression? Regression is a machine learning technology used to predict a response variable given multiple predictor variables or features. The main distinction is that the response to be predicted is any real value and not just any class or cluster name. Hence though similar to Classification in terms of making a prediction, it is largely different given what it’s predicting.  A simple to understand real world problem of regression would be predicting the sale price of a particular house based on it’s square footage, given that we have data of similar houses sold in that area in the past. T

Understanding Generative Adverserial Networks - Part 1

This is a two part series on understanding Generative Adversarial Networks (GANs). This part deals with the conceptual understanding of GANs. In the second part we will try to understand the mathematics behind GANs. Generative networks have been in use for quite a while now. And so have discriminative networks. But only in 2014 did someone get the brilliant idea of using them together. These are the generative adversarial networks. This kind of deep learning model was invented by Ian Goodfellow . When we work with data already labelled, it’s called supervised learning. It’s much easier compared to unsupervised learning, which has no predefined labels, making the task more vague.  "Generative Adversarial Networks is the most interesting idea in the last ten years in Machine Learning." - Yann LeCun In this post, we’ll discuss what GANs are and how they work, at a higher , more abstract level. Since 2014, many variations of the traditional GAN have co