Skip to main content

Why Study the Brain?

“There is no scientific study more vital to man than the study of his own brain. Our entire view of the universe depends on it.” ― Francis Crick





After unraveling the mysteries of DNA, the secret to life, Francis Crick for the rest of his life turned his attention to solve the mysteries of brain and consciousness. He was certain that the answer to intelligence lies deep in the structure of brain. In his book, The Astonishing Hypothesis: The Scientific Search for the Soul, Francis Crick theorizes a framework for studying consciousness. His work turned out to be an inspiration for many AI researchers, as it became evident that deciphering brain might lead to creating general intelligence. Today the research from neuroscience is used by AI researchers to create intelligent algorithms, that are different than traditional symbolic based systems. We at Cere Labs try to draw inspiration from biology and other sciences to get insights in the research we conduct.


The discovery of Santiago Ramón y Cajal
The neuron is the structural and functional unit of the nervous system - Santiago Ramón y Cajal

Ramon y Cajal in his laboratory.

The path breaking discovery of Santiago Ramon Cajal that the neocortex is made up of many layers and that the neuron is the structural and functional unit of nervous system helped AI researchers to take inspiration from this model. The drawings made by Santiago were  precise and helped neuroscience to grow with an alarming rate. This is the reason he is called the father of modern neuroscience.

Neocortex is uniform
“The neocortex is uniform” - Vernon Benjamin Mountcastle

Vernon Benjamin Mountcastle discovered that the neocortex is uniform throughout. He determined that the brain, unlike any other part of the human body, is divided into little subunits, each with its own specific role.

This discovery led to the assumption that the neocortex uses the same mechanism for any kind of sensor including sensors for light, sound and touch. Take your brain and give it any sensor including sensors such as radar, the brain will eventually learn to understand data coming from the sensors.

Such discoveries made in neuroscience helps AI researchers conclude that pattern recognition is the key to Artificial General Intelligence. Today Deep Learning works on the principles of pattern recognition, and takes numerous inputs from many years of brain research.


Comments

Popular posts from this blog

Implement XOR in Tensorflow

XOR is considered as the 'Hello World' of Neural Networks. It seems like the best problem to try your first TensorFlow program.

Tensorflow makes it easy to build a neural network with few tweaks. All you have to do is make a graph and you have a neural network that learns the XOR function.

Why XOR? Well, XOR is the reason why backpropogation was invented in the first place. A single layer perceptron although quite successful in learning the AND and OR functions, can't learn XOR (Table 1) as it is just a linear classifier, and XOR is a linearly inseparable pattern (Figure 1). Thus the single layer perceptron goes into a panic mode while learning XOR – it can't just do that. 

Deep Propogation algorithm comes for the rescue. It learns an XOR by adding two lines L1 and L2 (Figure 2). This post assumes you know how the backpropogation algorithm works.



Following are the steps to implement the neural network in Figure 3 for XOR in Tensorflow:
1. Import necessary libraries
impo…

Anomaly Detection based on Prediction - A Step Closer to General Artificial Intelligence

Anomaly detection refers to the problem of finding patterns that do not conform to expected behavior [1]. In the last article "Understanding Neocortex to Create Intelligence", we explored how applications based on the workings of neocortex create intelligence. Pattern recognition along with prediction makes human brains the ultimate intelligent machines. Prediction help humans to detect anomalies in the environment. Before every action is taken, neocortex predicts the outcome. If there is a deviation from the expected outcome, neocortex detects anomalies, and will take necessary steps to handle them. A system which claims to be intelligent, should have anomaly detection in place.
Recent findings using research on neocortex have made it possible to create applications that does anomaly detection. Numenta’s NuPIC using Hierarchical Temporal Memory (HTM) framework is able to do inference and prediction, and hence anomaly detection. HTM accurately predicts anomalies in real worl…

Understanding Projection Pursuit Regression

The following article gives an overview of the paper "Projection Pursuit Regression” published by Friedman J. H and Stuetzle W. You will need basic background of Machine Learning and Regression before understanding this article. The algorithms and images are taken from the paper. (http://www.stat.washington.edu/courses/stat527/s13/readings/FriedmanStuetzle_JASA_1981.pdf
What is Regression? Regression is a machine learning technology used to predict a response variable given multiple predictor variables or features. The main distinction is that the response to be predicted is any real value and not just any class or cluster name. Hence though similar to Classification in terms of making a prediction, it is largely different given what it’s predicting. 
A simple to understand real world problem of regression would be predicting the sale price of a particular house based on it’s square footage, given that we have data of similar houses sold in that area in the past. The regression so…